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a b s t r a c t

The k-local hyperplane distance nearest neighbors classification (HKNN) builds a non-linear decision

surface with maximal local margin in the input space, with invariance inferred from the local

neighborhood rather than the prior knowledge, so that it performs very well in many applications.

However, it still cannot be comparable with human being in classification on the noisy, the sparse, and

fier(RLHC),to overcome this problem by utilizing the perceptual relativity to HKNN. It finds k nearest

neighbors for the query sample from each class and then performs the relative transformation over all

these nearest neighbors to build the relative space. Subsequently, each local hyperplane is constructed

in the relative space, which is then applied to perform the classification. Experimental results on both

real and simulated data suggest that the proposed approach often gives the better results in

classification and robustness.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The k nearest neighbor (KNN) classification is one of the most
popular and simple methods for classification [1–4]. It is well
suited for multiclass problems with large amounts of training
data. Despite its simplicity, KNN as well as its variants is
competitive with the state of the art on various vision bench-
marks [5] and is considered one of the top 10 methods in data
mining. Theoretically, the one nearest neighbor (1NN) has asymp-
totic error rate that is at most twice the Bayes error rate,
independent of the distance metric used [6], whereas the asymp-
totic performance of KNN is even better than that of the 1NN [7].
KNN requires the tuning of only one free parameter and does not
assume any particular statistical distribution of the training
data [8]. However, it and its variants are still confronted with
some problems [9].

(1) The sparse problem: In many practical classification tasks,
such as face recognition, it is difficult and expensive to collect a
large number of training samples.When only few training sam-
ples compared to the intrinsic dimensionality of the feature space
are available, KNN is not guaranteed to obtain the optimal
results [9–11]. The performance of KNN relies on if an appropr-
iate distance metric is used to faithfully model the underlying
ll rights reserved.
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relationships such as the similarity between the input data points
[12,5]. Currently some well-designed distance metrics can be
applied or learned [13,12], including locally adaptive distance
[1,14–16], kernel trick [17], neighbor counting [18], Mahalanobis
distance metric [12], and data gravitation [19]. As a matter of fact,
the sparse problem can also exist in the low dimensional space if
the samples are not representative and the clear geometrical
shape of data are not formed. Besides defining the appropriate
distance metric to solve the sparse problem, another way is to
virtually enlarge the training samples by using local manifold
approaches, such as nearest feature line (NFL) [20], k-local hyper-
plane distance nearest neighbor (HKNN) [21], nearest neighbor
line (NNL) [24], and center-based nearest neighbor (CNN) [25].
These ideas have also been validated in the feature extraction
[26–28]. These approaches try to approximate the local data by
some kind of low-dimensional manifolds, aiming at virtually
enlarging the training set to mitigate the limitation arising from
the small number of training samples.

(2) The imbalance problem: This problem will be met when the
data in one class heavily outnumbers the data in another class,
the class boundary can be skewed towards the class with few data
samples [29]. To solve the problem, besides preprocessing the
training data such as by resampling and fuzzifying training data
[30], some more efficient classification rules can be designed. For
example, local mean classifier (LMC) uses the categorical k

nearest neighbors of the query sample to compute the local
centers per class and to classify the unseen query sample in
terms of the distance between the query and these centers [31].
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In this way, the same number of samples from each class is
utilized in classification. This similar idea has been extended by
utilizing the probability center (LPC) [2], HKNN [21], and ALH
[37,22,23].

(3) The noise problem: KNN and its variants are also very
sensitive to outliers or noises as they equally treat the noisy
samples and normal samples. The main reason is that we have
difficulties to distinguish the noisy samples from normal ones.
One way to overcome this problem is to apply fuzzy mechanism
and weighting techniques to assess conflicts among the nearest
neighbors [39]. Another complicated method is to integrate fuzzy
set with evidence theory [32]. Since that we cannot distinguish
and then remove the noisy samples from the training data, an
effective way is to reduce their negative influences.

HKNN solves the imbalance problem and the sparse problem
at the same time, so that it performs very well in a variety of
applications [33,22,23]. However, it does not solve the noise
problem. Particularly, it cannot be comparable with human being
when performing classification on the noisy, the sparse, and the
high dimensional data [34]. As in such cases, the performance of
used distance functions easily becomes invalidate [18]. This paper
proposes a new approach to overcome this problem that utilizes
the perceptual relativity to HKNN [52]. It finds k nearest neigh-
bors for the query sample from each class and then performs the
relative transformation over all these nearest neighbors to build
the relative space. Subsequently, each local hyperplane is con-
structed in the relative space, where the classification is per-
formed. The major contributions are as follows.
1.
 The perceptual relativity has been applied to improve the
classification performance on the sparse, the noisy or the
imbalanced data, indicating that the other perceptual laws in
cognitive psychology can be considered for classification.
2.
 A new classifier has been designed from HKNN with the
relative transformation. This classifier is efficient, simple,
general and easy to implement, without any additional
parameter.

The rest of this paper is organized as follows: Section 2 presents
some elementary concepts. A new classifier is designed in Section
3. The proposed classifier is evaluated through experiments in
Section 4. Section 5 presents a review of related work. The paper
is concluded with a summary and a discussion of possible future
work.
2. Elementary concepts

In this section, we present two concepts that our approach is
based upon and which will serve as building blocks.

2.1. HKNN

In the case of a finite number of samples, ‘‘missing’’ samples
would appear as ‘‘holes’’ introducing artifacts in the decision
surface produced. To fix this problem, the idea of HKNN is to
somehow fantasize the missing points, based on a local linear
approximation of the manifold of each class. It first selects k

nearest neighbors from each class as the class prototypes, and
then constructs a local hyperplane to approximate the local
manifold of each class based on these class prototypes. Hence,
the class label of the query is assigned according to the distance
between the query and the local hyperplane of each class. Let
xAwj be a training sample belong to the class oj, nc be the
number of the classes, q be an arbitrary query sample and d(x, y)

be a distance metric, we obtain a local categorical set consisting of
k nearest oj samples, denoted as Xoj
ðq,kÞ, where dðq,xÞodðq,pÞ if p

is not in Xoj
ðq,kÞ but pAoj. Similarly, the k nearest neighbors of

the query sample q from all classes is denoted as Xðq,kÞ.

Algorithm HKNN ðq,X,l,kÞ. /* q be the query sample, X be the
training samples, k be the neighborhood size for classification,
and l be the penalty parameter*/

Step 1: Select k nearest neighbors for the query sample q from

each class oj using Euclidean distance, denoted as Xoj
ðq,kÞ.

Step 2: For each Xoj
ðq,kÞ ¼ fx1, . . . ,xi, . . . ,xkg, we define the local

hyperplane as

Hk
oj
ðqÞ ¼ p9p¼ xþ

Xk

i ¼ 1

aiVi,aiAR

( )
ð1Þ

where x ¼
Pk

i ¼ 1 xi=k, and Vi ¼ xi�x.

Step 3: Compute the k-local hyperplane distance by

dðq,Hk
oj
ðqÞÞ ¼ min

pAHk
oj
ðqÞ
Jq�pJ

¼min
ai AR

q�x�
Xk

i ¼ 1

aiVi

�����
����� ð2Þ

where ai can be solved through solving a linear system that can be

easily expressed in matrix form as

ðV 0 � VÞ � a¼ V 0 � ðq�xÞ ð3Þ

where q and x be n dimensional column vectors, a¼ ða1, . . . ,akÞ
0

and V is an n� k matrix composed of column vectors Vi.

To penalize the large values of ai, a penalty term l is brought in.

Then the k-local hyperplane distance can be redefined as

dðq,Hk
oj
ðqÞÞ ¼min

ai AR
q�x�

Xk

i ¼ 1

aiVi

�����
�����

2

þl
Xk

i ¼ 1

a2
i

8<
:

9=
; ð4Þ

Step 4: Classify the query sample q to the class oj in terms of

oj ¼ arg min
jA f1;2,...,ncg

dðq,Hk
oj
ðqÞÞÞ ð5Þ

For any query point q, HKNN can find the closest neighbors, not

among the training set, but among an abstract and virtually

enriched training set that would contain all the fantasized

‘‘missing’’ points of the manifold of each class, locally approxi-

mated by an affine subspace. Noticeably, the performance of

HKNN significantly depends on the value of the penalty term.

2.2. Relative transformation

To nicely perform the classification on the sparse or noisy data,
it is naturally for machine classification to learn from human
being. The existing classification approaches, such as those to
recognizing digits and faces, require hundreds if not thousands of
samples for training, while human visual recognition can be
trained with very few samples [35]. This is because humans
routinely classify objects according to both their individual
attributes and membership in higher order groups, where indivi-
dual attributes may be influenced and regulated by their group [36].
This can be illustrated in Fig. 1. When we observe the circle x, it
looks bigger than its original size as it is surrounded by smaller
circles. In contrast, when the circle y is observed, it appears smaller
than its original size as it is surrounded by bigger circles. Conse-
quently, when we observe x and y simultaneously, x is perceived to
be bigger than y, although they are of the same sizes. This cognitive
characteristic is very important for us to distinguish an object from
its surrounding objects and can be then formalized using geometry
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Fig. 1. Human visual perception is relative.
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Fig. 2. Function of the relative transformation on noisy data, where (a) is the

original space and (b) is the relative space.
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model to process the data more efficiently. One way is to define a
transformation on the original space to build a new space whose
dimensions are composed of all points in the original space.
The newly created space is called the relative space and can be
generated through relative transformation:

f r : X-Y � Rn

yi ¼ f r
ðxiÞ ¼ ðdi1, . . . ,dij, . . . ,dinÞAY ,dij ¼ 9xi�xj9, where n is the

number of elements in data set X, the point xi in the original
space is mapped to the point yiARn in the relative space, and 9 � 9
is the distance norm.

Algorithm Y ¼ f r
ðXÞ. /*X be the original space as input and Y be

the relative space as output */

Step 1: Select the sample xAX, we calculate the distances

between it and any element xiAX where distance can be Eucli-

dean distance:

dðx,xiÞ ¼ 9x�xi9, i¼ 1 . . . 9X9

Step 2: Map the sample xAX to the point yAY in the relative

space by the following way:

y¼ ðy1, . . . ,yi, . . . ,y9X9ÞAR9X9, yi ¼ dðx,xiÞ, i¼ 1 . . . 9X9

Step 3: Repeat the above two steps until all samples in X are

mapped to the relative space Y.

Relative transformation can make the data more distinguishable
[52]. Some data can be distinguishable in the relative space while
they cannot be identified in the original space. The relative
transformation is also simple and efficient in dealing with noisy
data or outliers, as shown in Fig. 2. In the original space the point
x4 can be regarded as a noisy point or an outlier since it is far away
from the other three points. However, we have dðx3,x1Þ ¼ dðx3,x4Þ

in the original space. This means that the point x4 has the same
possibility with the point x1 to be taken as a nearest neighbor of
the point x3. This is not in line with our intuition. In the relative
space, dðy3,y1Þodðy3,y4Þ, the outlier or noisy point becomes
further away from the normal points. In such case, it can be
recognized easily. Furthermore, it may also make points which
originally lie on the same surface of the manifold closer to each
other and points that are from the different surfaces further away
from each other. This is especially useful to the sparse data.
Finally, this approach has a simple mathematical basis and it
allows a compact mathematical description of arbitrarily shaped
neighborhood in the original space.
3. Proposed new classifier

This section presents a new classifier that applies the relative
transformation to HKNN, called RLHC. It finds k nearest neighbors
for the query sample from each class and then performs the
relative transformation over all these nearest neighbors to build
the relative space. Subsequently, each local hyperplane is con-
structed in the relative space. The class label of the query is
assigned according to the distance between the query and the
local hyperplane of each class.

Algorithm RLHC ðq,X,l,kÞ. /* q be a query sample, X be the
training samples, k be the neighborhood size for classification,
and l be the penalty parameter*/

Step 1: Select k nearest neighbors for the query sample q from

each class oj using Euclidean distance, denoted as Xoj
ðq,kÞ

Step 2: Build the local region of the query sample by

Xðq,kÞ ¼
[

1r jrnc

Xoj
ðq,kÞ

Step 3: Build the relative space by

Xr
ðq,kÞ ¼ f r

ðXðq,kÞ [ fqgÞ

Step 4: For each Xr
oj
ðq,kÞ ¼ fy1, . . . ,yi, . . . ,ykgDXr

ðq,kÞ , we define

the local hyperplane as

Hk
oj
ðqÞ ¼ p9p¼ yþ

Xk

i ¼ 1

aiVi,aiAR

( )
ð6Þ

where y ¼
Pk

i ¼ 1 yi=k, and Vi ¼ yi�y.

Step 5: Compute the k-local hyperplane distance by

dðq,Hk
oj
ðqÞÞ ¼ min

pAHk
oj
ðqÞ
Jq�pJ¼min

ai AR
q�y�

Xk

i ¼ 1

aiVi

�����
����� ð7Þ

where ai can be solved through solving a linear system that can be

easily expressed in matrix form as

ðV 0 � VÞ � a¼ V 0 � ðq�yÞ ð8Þ

where q and y be n dimensional column vectors, a¼ ða1, . . . ,akÞ
0

and V is an n� k matrix composed of column vectors Vi. To

penalize the large values of ai, a penalty term l is brought in. Then



Fig. 3. Relative transformation used in RLHC.
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the k local hyperplane distance can be redefined as

dðq,Hk
oj
ðqÞÞ ¼min

ai AR
q�y�

Xk

i ¼ 1

aiVi

�����
�����

2

þl
Xk

i ¼ 1

a2
i

8<
:

9=
; ð9Þ

Step 6: Classify the query q to the class oj in terms of

oj ¼ arg min
jA f1;2,...,ncg

dðq,Hk
oj
ðqÞÞÞ ð10Þ

RLHC differs from HKNN in that it applies the relative transforma-

tion to build the relative local hyperplane for the query sample. The

other steps keep unchanged. The idea of RLHC can be illustrated

by Fig. 3.

Firstly, k nearest neighbors, where k¼3, from each class are

selected using Euclidean distance as follows: Xcirðq,3Þ ¼ fx1,x2,x3g,

Xrecðq,3Þ ¼ fx4,x5,x6g, Xtriðq,3Þ ¼ fx7,x8,x9g. From these neighbor-

hoods, the local region and the relative space are constructed as

follows:

Xðq,3Þ ¼
[

oA fcir,tri,recg

Xoðq,3Þ

¼ fx1,x2,x3,x4,x5,x6,x7,x8,x9g

Xr
ðq,kÞ ¼ f r

ðXðq,kÞ [ fqgÞ

¼ f r
ðfx1,x2,x3,x4,x5,x6,x7,x8,x9,qgÞ

RLHC does not add any parameter and has the same complexity as

that of HKNN to perform the classification for the query sam-

ple.This is because that the relative transformation is performed

locally in Oðk2
Þ for each query sample, where k can be regarded as

a constant.

4. Experimental results

4.1. Experimental setup

To validate RLHC on the classification performance, we com-
pare it with the baseline approaches through experiments on
benchmark data sets. These baseline approaches are KNN, FKNN
[39], EKNN [38], LMC [31], LPC [2], HKNN [21,22], and ALH [37].
As it is empirically validated that ALH outperforms many other
classifiers [37], including LDA, SVM, NFL, NNL, and CNN, these
classifiers are not compared in this experiments.
In experiments, the error rate is taken as the measure of the
performance [2,31]. The parameter k takes the value from
f3;6,9, . . . ,30g while the kernel parameter g for LPC takes the
values from f0:1,0:2, . . . ,0:9g. The parameter l for HKNN and RLHC
takes the values from f0:1,0:2, . . . ,0:9g. As T is for ALH uniquely and
this is no experience to define the range, we take the values from
1 : 0,1:2,1:4, . . . ,3:0 according to Fig. 2 in [37]. Euclidean distance is
taken in all compared classifiers. Because k-fold cross validations is
the most popular method to measure the quality of the classifier
[40], we perform 5 times five-fold cross validations on each data.
On each partition, the parameters are determined for each classi-
fier through five-fold cross validations on the training samples, and
then applied to perform the classification over the testing samples.
Finally the average error rate of each method is reported.
4.2. On artificial data sets

Using artificial data, we can control the number and the dimen-
sion of the available samples and can add noise according to the
experimental purpose. In the experiments, three artificial data sets
are used. The first artificial data is ring norm that can be regarded as
a benchmark data [42]. It is a 20-dimensional 2 class classification
example. Each class is drawn from a multivariate normal distribu-
tion. Class 1 has mean zero and covariance 4 times the identity.
Class 2 has mean (2/sqrt(20), 2/sqrt(20), y, 2/sqrt(20)) and unit
covariance. The second one is two-spiral-patterns data representing
a difficult problem that has been considered as a benchmark in
pattern classification [41]. The data is represented in Fig. 4. The third
data is p-dimensional norm data that has two classes [2]. Class 1 is
represented by a multivariate normal distribution with zero mean
and a standard deviation which is equal to one in all dimensions,
whereas class 2 is represented by a normal distribution with zero
mean and a standard deviation which is equal to two in all
dimensions. Clearly, the classes are linearly nonseparable and the
optimal decision boundary is quadratic. This data is usually referred
to the hard task and taken as benchmarks to evaluate the perfor-
mance of classifiers.

Generally the performance of a classifier is severely influenced
by the outliers or noisy samples, particularly in small training
sample size situations [31]. To compare RLHC with baseline
approaches on noisy data, we perform the experiments on two
benchmark artificial data sets: two spiral pattern data [41] and
ring norm data [42]. Each data is appended with different random
Gaussian noises. It can be observed from Fig. 5 that RLHC performs
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best on two spiral pattern data. Its average classification error rate
is 4.35%, followed by FKNN with the average classification error
rate 4.78%. HKNN is the worst performer whose average classifi-
cation error rate is 8.61%. On ring norm data, shown as Fig. 6,
RLHC performs best at many noise cases, whose average classifi-
cation error is 3.74%, followed by ALH with the average classifica-
tion error 7.33%. FKNN becomes the much bad performer on this
data whose average classification error rate is up to 57.07%, much
different from that it performs on two spiral pattern data, illustrat-
ing FKNN is much sensitive to the data. The average classification
error of HKNN is 10.77%, more than RLHC over 7.03%. These
experimental results mean that RLHC is strongest to resist in
noise disturbance.

It is well known that the curse of the dimensionality is a hard
issue for pattern recognition, as in high dimensional data there
may be redundant dimensions and exists a high degree of correla-
tion among these dimensions. This may be a severe drawback to
classifiers when dealing with small high dimensional data where
the data may be sparsely distributed. To validate RLHC with the
better ability to deal with the curse of the dimensionality problem,
we do experiments on ring norm data [42] and p-dimensional
norm data [2]. It can be observed from Fig. 7 that RLHC performs
best on ring norm data with the average classification error 6.36%,
followed by ALH with the average classification error 21.84%. The
average classification error of HKNN is 43.30%, more than RLHC
over 36.94%. As the dimension increases, the average classification
error of RLHC decreases while that of KNN and FKNN go up quickly.

On p-dimensional norm data, shown as Fig. 8, RLHC performs
best at any dimension, whose average classification error is 4.05%,
followed by EKNN with average classification error 6.02%. The
average classification error of HKNN is 13.48%, more than RLHC
over 9.43%. These experimental results suggest that RLHC may be
more robust to the dimensionality and shows a favorable beha-
vior in high dimensional data spaces.

4.3. On real data sets

While simulated data are informative for comparison studies,
it is highly likely that artificially constructed examples will not
correspond to situations that are likely to occur in practice. Thus,
in this section, we examine the performance of the competing
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classification methods using real data. One of the advantages of
real data is that they are generated without any knowledge of the
classification procedures that it will be used to test. In our
experiments we used eight different real data sets. These data
sets are all taken from the UCI Machine Learning Repository
(http://www.ics.uci.edu/�mlearn/MLRepository.html), illustrated as
Table 1. It can be observed from Table 2 that RLHC outperforms all
compared classifiers on the average of classification errors in eight
real data sets. The average standard deviation of the errors of RLHC is
also the smallest, indicating that its performance is most stable. No
classifier can perform best in all data sets. RLHC performs much best
in 2/8 data sets with large gap to the second best classifier, while it
outperforms HKNN in 5/8 data sets, illustrating the significance of the
relative transformation to the classification. It can be also observed
that HKNN performs better than RLHC on the rest three data sets, but
with much small gap.

Generally every method has its strengths and weaknesses. It is
necessary to apply a measure to evaluate the robustness of the
different methods. We take the usually used measure to quantify the
robustness by computing the ratio bm of the error rate em of method
m and the smallest error rate over all methods being compared in a
particular data set: bm ¼ em=min1rkr10ek [1,2,14]. Thus, the best
method mn for that problem has bm¼1, and all other methods have
larger values bm41. The larger the value of bm, the worse the
performance of the method. This means that the distribution of bm

will be a good indicator reflecting its robustness. Fig. 9 shows the
distribution of bm for each method over the 10 real data sets, which is
drawn using matlab function: boxplot. Clearly, the spread for RLHC is
much narrower and closer to one. This result demonstrates that it
obtains the most robust performance over these data sets.

4.4. Parameter analysis

As there is no structured way to choose the optimal para-
meters, it is expected that the proposed RLHC can be less sensitive
to the choice of their parameters. As the neighborhood size k is
common for all compared classifiers, we investigate how this
parameter affects the average classification error rate through
experiments on four real data sets. For the purpose of clarity,
here, we only give performance curves of HKNN, ALH, and RLHC,
Table 1
Data sets used in experiments.

No. Problem Attributes Classes Size

1 Wine 13 3 178

2 Dermatology 34 6 358

3 Diabetes 8 2 768

4 Ionosphere 34 2 351

5 Glass 9 7 214

6 Optdigits 64 10 1797

7 Segmentation 19 7 210

8 Yeast 8 10 1484

Table 2
Average classification errors (%) for real data.

No. KNN FKNN EKNN LMC

1 3.9271.50 3.9571.61 2.7871.91 3.3272.94

2 3.0872.52 3.3672.57 3.3672.37 3.3571.23

3 24.7473.86 25.6573.73 23.3174.23 23.3174.15
4 15.3775.87 14.2375.00 10.2474.72 9.9575.73

5 27.9975.42 28.9475.45 26.9975.53 33.6476.26

6 1.3370.45 1.3370.45 1.2870.50 0.8970.36

7 12.3875.43 12.3873.91 13.3375.22 10.0074.58
8 41.7871.82 40.5771.67 41.1773.12 41.5872.72

Avg. 16.3373.36 16.3073.05 15.3173.45 15.7573.50
as they share the similar idea and have better performance over
the other compared classifiers as illustrated as bm. It can be
observed from Figs. 10 to 13 that RLHC does not vary drastically
against the neighborhood sizes with a high confidence, showing
its best stability. It surpasses other approaches at many values of
the neighborhood size. This means that selection of k for RLHC is
easier than that for the baseline classifiers.
LPC HKNN ALH RLHC

3.8973.10 2.8071.91 1.6871.54 1.7071.55

2.7970.98 2.2371.58 4.4672.48 3.0771.82

23.8373.52 25.9173.10 28.0071.66 26.0473.46

10.8175.43 11.1072.28 10.8174.27 5.6972.22
32.2578.36 31.2775.57 34.1473.36 26.6773.84
0.8370.48 0.9570.32 1.0670.36 0.8970.53

10.4873.19 11.9073.76 12.3874.26 10.9571.30

41.9872.96 43.1371.50 45.8972.64 43.4672.75

15.8673.50 16.1672.50 17.3072.57 14.8172.18
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Fig. 10. Classification errors against neighborhood sizes.
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Fig. 12. Classification errors against neighborhood sizes.
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Fig. 13. Classification errors against neighborhood sizes.
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5. Related work

RLHC takes the similar principle to those local manifold
approaches, including nearest feature line (NFL) [20], nearest
feature space (NFS) method is proposed [55], k-local hyperplane
distance nearest neighbor (HKNN) [21], nearest neighbor line
(NNL) [24], and center-based nearest neighbor (CNN) [25]. Both
NFL and NFS metrics have been used in the classification phase
and in the feature extraction [26–28]. HKNN shares the similar
idea with NFS but perform very well in a variety of applications
[33,22,23]. RLHC is directly enhanced from HKNN.

RLHC also shares the similar decision rules with other
approaches, such as local mean classifier (LMC) [31], local prob-
ability center (LPC) [2], and HKNN. HKNN has been extended by
the feature weight [37] and the kernel technique [43]. RLHC
extends HKNN using the relative transformation. The relative
transformation is a newly proposed model based on the idea that
perception is relative, which has been validated in manifold
learning [52] and extended by the kernel technique [45], high
order techniques [44], as well as geodesic distance [46]. However
they are only applied to enhance the manifold learning, instead of
classification. Besides, some other feature space transformation
are also proposed for clustering [57], which can be further
investigated to perform the classification.

Many perceptual laws can account for the amazing ability of
human, as illustrated in topological invariants [47], Gestalt theory
of perception [49] and topological psychology [48]. In machine
vision, some computational theories apply these perceptual laws
to solve the problems such as to find Gestalts in digital images
[50], to perform object grouping on SAR images by Gestalt laws
[54], or to apply Gestalt law of continuity to perform visual
structure inference [53]. They used specific properties of images,
instead of taking each image as independent objects for classifica-
tion. Another novel work is the proposal of principle of homology
continuity [51]. This approach is important but not for designing
nearest neighbor classifiers. As a matter of fact, to apply Gestalt
laws to perform classification on independent objects is a much
significant task [56].
6. Conclusion

To nicely perform classification on the noisy, the sparse, and
the imbalance data, this paper presents a new classifier that
integrates the relative transformation with the local manifold-
based classifier. We showed that this approach achieves error rates
less than those local classifiers, while it does not increase the time
complexity, as where the relative transformation is performed
locally. This approach is also robust to the parameters and does
not need any additional parameter, so that it is more practical and
has wider applications. Further research is warranted in order to
gain a better insight into the method’s theoretical properties and
to investigate its performance in different cases where the differ-
ent relative transformation can be defined and applied properly.
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